Lab 3: Dummy Q-learning (table)

Reinforcement Learning with TensorFlow&OpenAl Gym
Sung Kim <hunkim+ml@gmail.com>

Learning Q(s, a): Table

initial Q values are 0

@
Lo

o
o

o oloioloYoo YO

@)
@)

Learning Q(s, a) Table (with many trials)
initial Q values are 0

el e uel art
BN el RN

Learning Q(s, a) Table: one success!
initial Q values are 0

Learning Q(s, a) Table: one success!

¥(s) = argmax Q(s,a)

Dummy Q-learning algorithm

For each s, a initialize table entry Q(s,a) + 0
Observe current state s
Do forever:

e Select an action a and execute it

e Receive immediate reward r

e Observe the new state s’

A

e Update the table entry for Q(s, a) as follows:

A

s.a) «—r+ maxO(s.a
Q05,0 ax Q(s', 0

s+ g -)
Machine Learning, 'I'. Mitchell, McGraw Hill, 1997

Dummy Q-learning algorithm

Initialize table with all zeros
Q = np.zeros([env.observation_space.n,env.action_space.n])
Set learning parameters
A num_episodes = 2000
For each s, a initialize table entry Q(s,a) < 0 =P
create lists to contain total rewards and steps per episode
Observe current state s rList = []
for i in range(num_episodes):
Reset environment and get first new observation

oy
Do forever: state = env.reset()

e Select an action a and execute it gf;rl]; : I0=alse
e Receive immediate reward r # The Q-Table learning algorithm
) while not done:
e Observe the new state s action = rargmax(Q[state, :])
e Update the table entry for Q(s, a) as follows: # Get new state and reward from environment
< new_state, reward, done,_ = env.step(action)

Q(s,a) < r+ maxQ(s,a’) | , |
’ a’ # Update Q-Table with new knowledge using learning rate
Q[state,action] = reward + np.max(Q[new_state,:])

o5+ g
state = neW_State

Machine Learning, 'I'. Mitchell, McGraw Hill, 1997

Code: setup

import gym

import numpy as np

import matplotlib.pyplot as plt

from gym.envs.registration import register
import random as pr

def rargmax(vector): # https:/gist.github.com/stober/1943451
""" Argmax that chooses randomly among eligible maximum indices. """
m = np.amax(vector)
indices = np.nonzero(vector == m) [0]
return pr.choice(indices)

register(
id="'FrozenLake-v3',
entry_point="'gym.envs.toy_text:FrozenLakeEnv',
kwargs={'map_name': '4x4',
'is_slippery': False}

)€

env = gym.make('FrozenLake-v3')

Code: (dummy) Q-learning

Initialize table with all zeros

Q = np.zeros([env.observation_space.n,env.action_space.n])
Set learning parameters

num_episodes = 2000

create lists to contain total rewards and steps per episode
rList = []
for i in range(num_episodes):

Reset environment and get first new observation

state = env.reset()

rAll

The Q-Table learning algorithm
while not done:
action = rargmax(Q[state, :1)

Get new state and reward from environment
new_state, reward, done,_ = env.step(action)

Update Q-Table with new knowledge using learning rate
' ® | (Q[state,action] = reward + np.max(Q[new_state,:])

rAll += reward
state = new_state

rList.append(rAll)

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-

Code: result reporting

print(“Success rate: " + str(sum(rList)/num_episodes))
print("Final Q-Table Values")

print ("LEFT DOWN RIGHT UP")

print(Q)

plt.bar(range(len(rList)), rList, color="blue")
plt.show()

Success rate: 0.95

1.0 1

0.8 -

0.6

0.4

0.2 1

0.0

0 250 500 750 1000 1250 1500 1750 2000

Q = np.zeros([env.observation_space.n, env.action_space.n])

print(Q)
LEFT DOWN RIGHT UP
[0. 0. 1. 0]
[0. 0. 1. 0]
[0. 1. 0. O]
[0. 0. 0. 0]
[0. 0. 0. 0]
[0. 0. 0. 0]
[0. 1. 0. 0]
[0. 0. 0. 0]
[0. 0. 0. 0]
[0. 0. 0. 0]
[0. 1. 0. 0]
[0. 0. 0. 0]
[0. 0. 0. 0]
[0. 0. 0. 0]
[0. 0. 1. 0]
[0. 0. 0. 0]

