Lab 4: Q-learning (table)

exploit&exploration and discounted future reward

Reinforcement Learning with TensorFlow&OpenAl Gym
Sung Kim <hunkim+ml@gmail.com>



Exploit VS Exploration: decaying E-greedy

for i in range (1000) for i in range(num_episodes):

e=0.1 /(|+1) ®= 1. /7 ((1/ 1%0_)+1) # Python2
i # The Q-Table learning algorithm
if random(1) <e: while not done:

a = random # Choose an action by ereedy

if np.random.rand(1) <
] action = env.action_space.sample()
else: else: e

a = argmax(Q(s, a)) action = np.argmax(Q[state, :])




Exploit VS Exploration: add random noise

foriin range (1000)

a = argmax(Q(s, a) + random_values / (i+1))
# Choose an action by gree(%f" ly (with noise) picking from Q table
action = np.argmax@[state, :] + np.random.randn(1, env.action_space.n) / (i + 1)
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Discounted reward 77 = 0.9)




Q-learning algorithm

For each s, a initialize table entry Q(s,a) + 0
Observe current state s
Do forever:

e Select an action a and execute it

e Receive immediate reward r

e Observe the new state s’

e Update the table entry for Q(s

,a) as follows:
CQ(S, a) < r +ymax Q(s',a')

# Discount factor
dis .99 @é}

# Update Q-Table with new
Q[state,action]

o5+ g

knowledge using decay rate
reward +<§i§>§>nglmax(0[new_state,:])

-/

Machine Learning, 'I'. Mitchell, McGraw Hill, 1997




Code: setup

import matplotlib.pyplot as plt
from gym.envs.registration import register

import gym
import numpy as np

———

register(
id='FrozenLake-v3',
entry_point='gym.envs.toy_text:FrozenLakeEnv',
kwargs={'map_name': '4x4',
'is_slippery': False}

)
\V’env = gym.make('FrozenLake-v3")

# Initialize table with all zeros
\/ Q = np.zeros([env.observation_space.n,env.action_space.nl)
# Discount factor
Vdis =_.99
num_episodes = 2000

# create lists to contain total rewards and steps per episode
rList = []




Code: Q learning

for i in range(num_episodes):
# Reset environment and get first new observation
state = env.reset()
rAll = 0
0 False

# The Q-Table learning algorithm
— while not done:
# Choose an action by greedily (with noise) picking from Q table
action = np.argmax(QiEEEEgL_i] + np.random.randn(1l, env.action_space.n) / (i + 1))

—

# Get new state and reward from environment
new_state, reward, done,_ = env.step(action)

# Update Q-Table with new knowledge using decay rate

Q[state,action] = reward + dis * np.max(Q[new_state, :]
-

\_ﬁ rAll += reward
state = new_state

rList.append(rAll)




Code: results

print(“”Success rate: " + str(sum(rList)/num_episodes))
print("Final Q-Table Values")

print(Q)
plt.bar(range(len(rList)), rList, color="blue")
plt.show()
Success rate: 0.9635
Final Q-Table Values
(\ [[ o. 0. 0.95099005 0. ]
[ 0. 0. 0.96059601 0. ]
[ 0. 0.970299  O. 0. ]
[ 0. 0. 0. 0. ]
[ 0. 0. 0. 0. ]
[ 0. 0. 0. 0. ]
[ 0. 0.9801 0. 0. ]
[ 0. 0. 0. 0. ]
[ 0. 0. 9.970299 0. ]
[ 0. 0.9801 0. 0. ]
[ 0. 0.99 0. 0. ]
[ 0. 0. 0. 0. ]
[ 0. 0. 0. 0. ]
[ 0. 0. 0.99 0. ]
L\_ [ 0. 0. 1. 0. ]
_ [ o. 0. 0. 0. 11




Code: e-greedy

/f
e = 1. / ((i(//)100)+1)

# The Q-Table learning algorithm
while not done:
# Choose an action by e greedy
if np.random.rand(1) < e:
action = env.action_space.sample()
else:
action = np.argmax(Q[state, :])




Code: e-greedy results

Success rate: 0.828
Final Q-Table Values

[[

~~

(SIS B S IS IS B S IS TS B S IS IS B S IS B S B

[
[
[
[
[
[
[
[
[
[
[
[
[
[

0.
. 94148015
. 95099005
. 96059601
. 95099005

94148015

. 96059601
. 96059601
. 970299

. 9801

0

(SIS IS IO I S B S IS IS IS TGS IS IS IS IS I

. 95099005 ©0.95099005 0.

. 970299
. 96059601
. 9801

. 9801
.99

0

(S B S IS IS B S IS TS B S IS T S B S IS WS

. 96059601 0.
. 970299

. 9801

.99

0.

. 970299

. 970299
. 9801

(SIS IS IS IS B S B S B GS B GS IS TGS IS I G

94148015]
95099005]
960596011]

]

.94148015]

]

. 96059601 ]

]

.95099005]







