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What is Positive Reinforcement Dog Training?
o Teaching dogs desirable behaviors usin& EWA s thods.

e Helping dogs learn and succeed step by step.
 Motivating dogs with fun exercises and games. No force! No pain!

e Encouroaging dogs to think more for themselves.

e Valving dogs' voluntary behaviors.

e Understanding dogs' feelings from their body language.

¢ Understanding how dogs learn, their needs and wanls.

e Using methods that work humanely with ANY dog. Big dogs, small dogs,
puppies, senior dogs, disabled dogs, fearful dogs, reactive dogs... can all learn and have fun!

e + ¥

1. develop 2. develop 3. develop
dog's self-control a trust relationship dog's self-confidence

http://angelpawstherapy.org/positive-reinforcement-dog-training.html



Nature of Learning

® We learn from past experiences.
= When an infant plays, waves its arms, or looks about, it has no explicit teacher
= But it does have direct interaction to its environment.

® Years of positive compliments as well as negative criticism have all
helped shape who we are today.

o' Reinforcement learning: computational approach to learning from

interaction.

Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduction
Nishant Shukla , Machine Learning with TensorFlow



Reinforcement Learning

Internal state

environment

——

learning rate o
inverse temperature Ad_o\q
discount rate y - 'E_U\U

obse irvation

https://www.cs.utexas.edu/~eladlieb/RLRG.htm|
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Atari Breakout Game (2013, 2015)

W ces s W o= 5

W ose s B osu S i

Figure 1: Atari Breakout game. Image credit: DeepMind.




Atari Games




Nature : Human-level control through deep
reinforcement learning

B é

Human-level control through deep reinforcement learning, Nature
http://www.nature.com/nature/journal/v518/n7540/full/nature 14236 .htm|
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s Google DeepMind
Challenge Match

8 - 15 March 2016

Challenge Match




DeepMind AI Reduces Google Data Centre
Cooling Bill by 40%

https://deepmind.com/applied/deepmind-for-google/



Reinforcement Learning Applications

® Robotics: torque at joints

® Business operations

= Inventory management: how much to purchase of inventory, spare
parts

= Resource allocation: e.g. in call center, who to service first
® Finance: Investment decisions, portfolio design

® E-commerce/media

= What content to present to users (using click-through / visit time as
reward)

= What(ads to present to users (avoiding ad fatigsue)



Audience

® VWant to understand basic reinforcement learning (RL)

0@/weak math/computer science background

R

-=Q=r+ Q—’ @\\L AN ®\
® Want to use@as black-box with basic understanding

® Want to use TensorFlow and Python (optional labs)




N o U W N

Schedule

\

Playing Games, OpenAl Gym Introduction & Lab
Q-learning with Tables & Lab

Q learning on nondeterministic Rewards and Actions & Lab
Q-learning with Networks (DQN) & Lab
Policy Gradients & Lab

Further Topics\/
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