

Lecture 3: Q-learning (table)

Try Frozen Lake, Real Game?

9		5	
3 X	Urio SI	L 1:0 SZ	

Frozen Lake: Random?

e		
3		

Frozen Lake: Even if you know the way, **ask**. "아는 길도, **물어가라**"

<u>Z</u>	→ D. S	
√ 0 <u>13</u>		

Q-function (state-action value function)

Q (state, action)

Policy using Q-function

Q (state, action)

Q (sI, LEFT): 0

Q (sI, RIGHT): 0.5

Q (s1, UP): 0

Q (s1, DOWN): 0.3

(D max (SIg a)

2 MOX - ONT (SI) ON (SI) ON (SI)

Optimal Policy, π and Max Q

Q (state, action)

$$\operatorname{Max} \mathbf{Q} = \max_{a'} Q(s, a')$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

Frozen Lake: optimal policy with Q

S		

Frozen Lake: optimal policy with Q

S	S)	

Finding, Learning Q

R

- Assume (believe) Q in s` exists!
- My condition
 - I am in **s**
 - when I do action **a**, I'll go to **s**
 - when I do action a, I'll get reward r
 - = Q in s', Q(s', a') exist!

Learning Q (s, a)?

(S) a (S) (S) (S) (S) (S)	ar S	

State, action, reward

Future reward

Learning Q (s, a)?

$$\hat{Q}(s,a) \leftarrow r + \max_{\underline{a'}} \hat{Q}(s',a')$$

Learning Q(s, a): 16x4 Table 16 states and 4 actions (up, down, left, right)

Learning Q(s, a): Table initial Q values are 0

0 0	0 0	0 0	0 0
0	0	0	0
0	0	0	0
0 0	0 0	0 0	
	0	0	0
0 0	0 0	0 0	0 0
0	0	0	0
0	0	0	
0 0	0 0	0 0	
U	U	U	U

Learning Q(s, a) Table (with many trials) initial Q values are 0

Learning Q(s, a) Table (with many trials) initial Q values are 0

$$Q(s_{13}, a_{right}) = r + max(Q(s_{14}, a)) = 0 + max(0, 0, 1, 0) = 1$$

Learning Q(s, a) Table: one success! initial Q values are 0

Learning Q(s, a) Table: optimal policy

$$\pi^*(s) = \operatorname*{argmax}_a Q(s, a)$$

Dummy Q-learning algorithm

For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow \underline{0}$

Observe current state s

Do forever:

- Select an action a and execute it
- Receive immediate reward r
- Observe the new state(s')
- Update the table entry for $\hat{Q}(s, a)$ as follows:

$$\underbrace{\hat{Q}(\underline{s},\underline{a})} \leftarrow \underline{r} + \max_{a'} \hat{Q}(s',a')$$

 \bullet $s \leftarrow s'$

Next Lab: Dummy Q-learning Table

