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Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N

Initialize action-value function Q with random weights
for episode = 1,M do

Initialise sequence s1 = {x1} and preprocessed sequenced �1 = �(s1)

for t = 1, T do
With probability ✏ select a random action at

otherwise select at = maxa Q
⇤
(�(st), a; ✓)

Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess �t+1 = �(st+1)

Store transition (�t, at, rt,�t+1) in D
Sample random minibatch of transitions (�j , aj , rj ,�j+1) from D

Set yj =
⇢

rj for terminal �j+1

rj + �maxa0
Q(�j+1, a

0
; ✓) for non-terminal �j+1

Perform a gradient descent step on (yj �Q(�j , aj ; ✓))
2 according to equation 3

end for
end for

Second, learning directly from consecutive samples is inefficient, due to the strong correlations
between the samples; randomizing the samples breaks these correlations and therefore reduces the
variance of the updates. Third, when learning on-policy the current parameters determine the next
data sample that the parameters are trained on. For example, if the maximizing action is to move left
then the training samples will be dominated by samples from the left-hand side; if the maximizing
action then switches to the right then the training distribution will also switch. It is easy to see how
unwanted feedback loops may arise and the parameters could get stuck in a poor local minimum, or
even diverge catastrophically [25]. By using experience replay the behavior distribution is averaged
over many of its previous states, smoothing out learning and avoiding oscillations or divergence in
the parameters. Note that when learning by experience replay, it is necessary to learn off-policy
(because our current parameters are different to those used to generate the sample), which motivates
the choice of Q-learning.

In practice, our algorithm only stores the last N experience tuples in the replay memory, and samples
uniformly at random from D when performing updates. This approach is in some respects limited
since the memory buffer does not differentiate important transitions and always overwrites with
recent transitions due to the finite memory size N . Similarly, the uniform sampling gives equal
importance to all transitions in the replay memory. A more sophisticated sampling strategy might
emphasize transitions from which we can learn the most, similar to prioritized sweeping [17].

4.1 Preprocessing and Model Architecture

Working directly with raw Atari frames, which are 210⇥ 160 pixel images with a 128 color palette,
can be computationally demanding, so we apply a basic preprocessing step aimed at reducing the
input dimensionality. The raw frames are preprocessed by first converting their RGB representation
to gray-scale and down-sampling it to a 110⇥84 image. The final input representation is obtained by
cropping an 84⇥ 84 region of the image that roughly captures the playing area. The final cropping
stage is only required because we use the GPU implementation of 2D convolutions from [11], which
expects square inputs. For the experiments in this paper, the function � from algorithm 1 applies this
preprocessing to the last 4 frames of a history and stacks them to produce the input to the Q-function.

There are several possible ways of parameterizing Q using a neural network. Since Q maps history-
action pairs to scalar estimates of their Q-value, the history and the action have been used as inputs
to the neural network by some previous approaches [20, 12]. The main drawback of this type
of architecture is that a separate forward pass is required to compute the Q-value of each action,
resulting in a cost that scales linearly with the number of actions. We instead use an architecture
in which there is a separate output unit for each possible action, and only the state representation is
an input to the neural network. The outputs correspond to the predicted Q-values of the individual
action for the input state. The main advantage of this type of architecture is the ability to compute
Q-values for all possible actions in a given state with only a single forward pass through the network.
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DQN’s three solutions

1. Go deep 

2. Capture and replay 
•  Correlations between samples

3. Separate networks
• Non-stationary targets

Tutorial: Deep Reinforcement Learning, David Silver, Google DeepMind



1. Go deep (class) 

https://github.com/awjuliani/DeepRL-Agents



2. Replay memory

Deep Q-Networks (DQN): Experience Replay

To remove correlations, build data-set from agent’s own experience
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To deal with non-stationarity, target parameters w� are held fixed

https://github.com/awjuliani/DeepRL-Agents



2. Train from replay memory

https://github.com/awjuliani/DeepRL-Agents
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2. Train from replay memory

https://github.com/awjuliani/DeepRL-Agents



Recap



Code1: setup

https://github.com/awjuliani/DeepRL-Agents



Code 2: 
Network

https://github.com/awjuliani/DeepRL-Agents



Code 3: Train from Replay Buffer

https://github.com/awjuliani/DeepRL-Agents



Code 4: bot play

https://github.com/awjuliani/DeepRL-Agents



https://github.com/awjuliani/DeepRL-Agents

Code 6: main



How to read results



How to read results



Next 

Lab: DQN (Nature 2015)
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