
Lecture 10-1
ReLU: Better non-linearity

Sung Kim <hunkim+mr@gmail.com>
http://hunkim.github.io/ml/

NN for XOR
Activation function

NN for XOR

Let’s go deep & wide!

9 hidden layers!

9 hidden layers!

9 hidden layers!

Tensorboard visualization

Poor results?

Tensorboard
Cost &

Accuracy

cost

accuracy

Backpropagation

lec 9-2: Backpropagation (chain rule)

http://cs231n.stanford.edu/

Vanishing gradient (NN winter2: 1986-2006)

 Geoffrey Hinton’s summary of findings up to today

• Our labeled datasets were thousands of times too small.

• Our computers were millions of times too slow.

• We initialized the weights in a stupid way.

• We used the wrong type of non-linearity.

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

Sigmoid!

Sigmoid!

ReLU: Rectified Linear Unit

ReLU: Rectified Linear Unit

 L1 = tf.sigmoid(tf.matmul(X, W1) + b1)

 L1 = tf.nn.relu(tf.matmul(X, W1) + b1)

ReLu

Works very well

Works very well

Cost function

sigmoid

ReLU

ReLU

Activation functions on CIFAR-10

[Mishkin et al. 2015]

Next

Weight initialization

Lecture 10-2
Initialize weights in a smart way

Sung Kim <hunkim+mr@gmail.com>
http://hunkim.github.io/ml/

Vanishing gradient

 Geoffrey Hinton’s summary of findings up to today

• Our labeled datasets were thousands of times too small.

• Our computers were millions of times too slow.

• We initialized the weights in a stupid way.

• We used the wrong type of non-linearity.

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

Set all initial weights to 0

http://cs231n.stanford.edu/

Cost function

sigmoid

ReLU

ReLU

Need to set the initial weight values wisely

• Not all 0’s

• Challenging issue

• Hinton et al. (2006) "A Fast Learning Algorithm for Deep Belief Nets”
- Restricted Boatman Machine (RBM)

How can we use RBM to initialize weights?

• Apply the RBM idea on adjacent two layers as a pre-training step

• Continue the first process to all layers

• This will set weights

• Example: Deep Belief Network
- Weight initialized by RBM

Good news

• No need to use complicated RBM for weight initializations

• Simple methods are OK
- Xavier initialization: X. Glorot and Y. Bengio, “Understanding the difficulty of

training deep feedforward neural networks,” in International conference on artificial
intelligence and statistics, 2010

- He’s initialization: K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” 2015

Xavier/He initialization

• Makes sure the weights are ‘just right’, not too small, not too big

• Using number of input (fan_in) and output (fan_out)

http://cs231n.stanford.edu/

 prettytensor implementation

http://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow

Activation functions and initialization on CIFAR-10

[Mishkin et al. 2015]

Still an active area of research

• We don’t know how to initialize perfect weight values, yet

• Many new algorithms
- Batch normalization
- Layer sequential uniform variance

- …

 Geoffrey Hinton’s summary of findings up to today

• Our labeled datasets were thousands of times too small.

• Our computers were millions of times too slow.

• We initialized the weights in a stupid way.

• We used the wrong type of non-linearity.

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

Next

dropout and

model ensemble

Lecture 10-3
NN dropout and model ensemble

Sung Kim <hunkim+mr@gmail.com>

Overfitting

Am I overfitting?

• Very high accuracy on the training dataset (eg: 0.99)

• Poor accuracy on the test data set (0.85)

http://cs224d.stanford.edu/syllabus.html

Solutions for overfitting

• More training data!

• Reduce the number of features

• Regularization

Regularization

• Let’s not have too big numbers in the weight

Regularization

• Let’s not have too big numbers in the weight

cost

Dropout: A Simple Way to Prevent Neural Networks
from Overfitting [Srivastava et al. 2014]

TensorFlow implementation

dropout_rate = tf.placeholder("float")  
_L1 = tf.nn.relu(tf.add(tf.matmul(X, W1), B1))
L1 = tf.nn.dropout(_L1, dropout_rate)
 

TRAIN:
sess.run(optimizer, feed_dict={X: batch_xs, Y: batch_ys,
dropout_rate: 0.7})  

EVALUATION:
print "Accuracy:", accuracy.eval({X: mnist.test.images, Y:
mnist.test.labels, dropout_rate: 1})

http://www.slideshare.net/sasasiapacific/ipb-improving-the-models-predictive-power-with-ensemble-approaches

Next

NN LEGO Play!

Lecture 10-4
NN LEGO Play

Sung Kim <hunkim+mr@gmail.com>

Feedforward neural network

Fast forward

Split & merge

Recurrent network

'The only limit is your imagination'

http://itchyi.squarespace.com/thelatest/2012/5/17/the-only-limit-is-your-imagination.html

