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Recurrent Neural Network
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Recurrent Neural Network

usually want to
predict a vector at
some time steps
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y
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new state / old state input vector at

| some time step -
some function y >

with parameters W <
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y
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Notice: the same function and the same set «
of parameters are used at every time step.
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(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = &V(ht_—la__ajt) @
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Notice: the same function and the same set
of parameters are used at every time step.
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Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training

sequence:
“hello”

hy)= tanh(Wrrhe=1 + Wanzt)
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hidden layer

input layer
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Character-level
language model ht = tanh(Whnht 1 + Went)

example /

VocabUIary' hidden layer .%T@(g)g

[h,e,l,0] 09 }) ‘o1,

Example training : > - -

sequence: input layer | 9 - : :

“hello” 0 0 0 0
input chars: “h” “e” i I
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Character-level
language model

hi = tanh(Whnht—1 + Wanzy)
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Character-level
language model

hi = tanh(Whnht—1 + Wanzy)

example
Vocabulary: | 03 10 60 |y rhl03
hidden layer \ -0.1 > 0.3 » 05 F——{ 0.9
[h,e,l,o] 0.9 0.1 10.3 & 0.7
> RGN
. I
Example training 1 : = -
sequence: input layer | 0 ] : :
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input chars: “h” “e” g i3 “I”
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RNN applications

https://github.com/TensorFlowKR/awesome_tensorflow_implementations

Language Modeling& [:\1 D

Speech Recognition

Machine Translation

Conversation Modeling/Question Answering

Image/Video Captioning

Image/Music/Dance Generation
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http://jiwonkim.org/awesome-rnn/



Recurrent Networks offer a lot of flexibility:

cy@ one to many many to one many to many many to many
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\ Vanilla Neural Networks
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Recurrent Networks offer a lot of flexibility:

one to one one :[3 many many to one many to many many to many
e —

f t t f Pt Pt

f f Pt bt Pt

\ e.g. Image Captioning

image -> sequence of words
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many

f t t Pt Pt

f f Pt bt Pt
e

\ e.g. Sentiment Classification
sequence of words -> sentiment
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one manyw many to many
f t t f Pt Pt
f f Pt bt Pt

\ e.g. Machine Translation
seq of words -> seq of words
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f t t f Pt Pt

f f Pt bt Pt
P AT

e.g. Video classification on frame level
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Multi-Layer RNN
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Training RNINs is challenging

® Several advanced models
= Long Short Term Memory (LSTM)
= GRU by Cho etal. 2014






