
Lecture 7-1
Application & Tips:

Learning rate, data preprocessing, overfitting

Sung Kim <hunkim+mr@gmail.com>

https://www.udacity.com/course/viewer#!/c-ud730/l-6370362152/m-6379811827

Gradient descent

https://www.udacity.com/course/viewer#!/c-ud730/l-6370362152/m-6379811827

Gradient descent

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Large learning rate: overshooting

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Small learning rate:
takes too long, stops at local minimum

Try several learning rates

• Observe the cost function

• Check it goes down in a reasonable rate

Data (X) preprocessing for gradient descent

Data (X) preprocessing for gradient descent

x1 x2 y

1 9000 A

2 -5000 A

4 -2000 B

6 8000 B

9 9000 C

Data (X) preprocessing for gradient descent

x1 x2 y

1 9000 A

2 -5000 A

4 -2000 B

6 8000 B

9 9000 C

Data (X) preprocessing for gradient descent

Standardization

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Chapter 2

[41]

Many machine learning algorithms that we will encounter throughout this book
require some sort of feature scaling for optimal performance, which we will discuss
in more detail in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn.
Gradient descent is one of the many algorithms that benefit from feature scaling.
Here, we will use a feature scaling method called standardization, which gives our
data the property of a standard normal distribution. The mean of each feature
is centered at value 0 and the feature column has a standard deviation of 1. For
example, to standardize the j th feature, we simply need to subtract the sample
mean jµ from every training sample and divide it by its standard deviation jσ :

j j
j

j

µ
σ
−

′ =
x

x

Here jx is a vector consisting of the j th feature values of all training samples n .

Standardization can easily be achieved using the NumPy methods mean and std:

>>> X_std = np.copy(X)

>>> X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()

>>> X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

After standardization, we will train the Adaline again and see that it now converges
using a learning rate 0.01η = :

>>> ada = AdalineGD(n_iter=15, eta=0.01)

>>> ada.fit(X_std, y)

>>> plot_decision_regions(X_std, y, classifier=ada)

>>> plt.title('Adaline - Gradient Descent')

>>> plt.xlabel('sepal length [standardized]')

>>> plt.ylabel('petal length [standardized]')

>>> plt.legend(loc='upper left')

>>> plt.show()

>>> plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')

>>> plt.xlabel('Epochs')

>>> plt.ylabel('Sum-squared-error')

>>> plt.show()

www.it-ebooks.info

Chapter 2

[41]

Many machine learning algorithms that we will encounter throughout this book
require some sort of feature scaling for optimal performance, which we will discuss
in more detail in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn.
Gradient descent is one of the many algorithms that benefit from feature scaling.
Here, we will use a feature scaling method called standardization, which gives our
data the property of a standard normal distribution. The mean of each feature
is centered at value 0 and the feature column has a standard deviation of 1. For
example, to standardize the j th feature, we simply need to subtract the sample
mean jµ from every training sample and divide it by its standard deviation jσ :

j j
j

j

µ
σ
−

′ =
x

x

Here jx is a vector consisting of the j th feature values of all training samples n .

Standardization can easily be achieved using the NumPy methods mean and std:

>>> X_std = np.copy(X)

>>> X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()

>>> X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

After standardization, we will train the Adaline again and see that it now converges
using a learning rate 0.01η = :

>>> ada = AdalineGD(n_iter=15, eta=0.01)

>>> ada.fit(X_std, y)

>>> plot_decision_regions(X_std, y, classifier=ada)

>>> plt.title('Adaline - Gradient Descent')

>>> plt.xlabel('sepal length [standardized]')

>>> plt.ylabel('petal length [standardized]')

>>> plt.legend(loc='upper left')

>>> plt.show()

>>> plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')

>>> plt.xlabel('Epochs')

>>> plt.ylabel('Sum-squared-error')

>>> plt.show()

www.it-ebooks.info

Overfitting

• Our model is very good with training data set (with memorization)

• Not good at test dataset or in real use

Overfitting

Solutions for overfitting

• More training data!

• Reduce the number of features

• Regularization

Regularization

• Let’s not have too big numbers in the weight

Regularization

• Let’s not have too big numbers in the weight

Regularization

• Let’s not have too big numbers in the weight

Regularization

• Let’s not have too big numbers in the weight

Summary

• Learning rate

• Data preprocessing

• Overfitting
- More training data
- Regularization

Lecture 7-2
Application & Tips:

Learning and test data sets

Sung Kim <hunkim+mr@gmail.com>

Performance evaluation: is this good?

Evaluation using training set?

• 100% correct (accuracy)

• Can memorize

Training and test sets

http://www.holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html

Training, validation and test sets

http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets

Online learning

http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets

model

MINIST Dataset

http://yann.lecun.com/exdb/mnist/

Accuracy

• How many of your predictions are correct?

• 95% ~ 99%?

• Check out the lab video

