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https://www.udacity.com/course/viewer#!/c-ud730/l-6370362152/m-6379811827

Gradient descent 



https://www.udacity.com/course/viewer#!/c-ud730/l-6370362152/m-6379811827

Gradient descent 



http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Large learning rate: overshooting



http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Small learning rate: 
takes too long, stops at local minimum



Try several learning rates

• Observe the cost function

• Check it goes down in a reasonable rate 



Data (X) preprocessing for gradient descent 



Data (X) preprocessing for gradient descent 
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Data (X) preprocessing for gradient descent 



Standardization

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html
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Many machine learning algorithms that we will encounter throughout this book 
require some sort of feature scaling for optimal performance, which we will discuss 
in more detail in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. 
Gradient descent is one of the many algorithms that benefit from feature scaling. 
Here, we will use a feature scaling method called standardization, which gives our 
data the property of a standard normal distribution. The mean of each feature 
is centered at value 0 and the feature column has a standard deviation of 1. For 
example, to standardize the j th feature, we simply need to subtract the sample 
mean jµ  from every training sample and divide it by its standard deviation jσ :
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Here jx  is a vector consisting of the j th feature values of all training samples n .

Standardization can easily be achieved using the NumPy methods mean and std:

>>> X_std = np.copy(X)

>>> X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()

>>> X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

After standardization, we will train the Adaline again and see that it now converges 
using a learning rate 0.01η = :

>>> ada = AdalineGD(n_iter=15, eta=0.01)

>>> ada.fit(X_std, y)

>>> plot_decision_regions(X_std, y, classifier=ada)

>>> plt.title('Adaline - Gradient Descent')

>>> plt.xlabel('sepal length [standardized]')

>>> plt.ylabel('petal length [standardized]')

>>> plt.legend(loc='upper left')

>>> plt.show()

>>> plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')

>>> plt.xlabel('Epochs')

>>> plt.ylabel('Sum-squared-error')

>>> plt.show()
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Overfitting

• Our model is very good with training data set (with memorization)

• Not good at test dataset or in real use



Overfitting



Solutions for overfitting

• More training data!

• Reduce the number of features

• Regularization



Regularization

• Let’s not have too big numbers in the weight 
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Regularization
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Regularization

• Let’s not have too big numbers in the weight 



Summary

• Learning rate

• Data preprocessing

• Overfitting
- More training data
- Regularization



Lecture 7-2 
Application & Tips:

Learning and test data sets

Sung Kim <hunkim+mr@gmail.com>



Performance evaluation: is this good?



Evaluation using training set?

• 100% correct (accuracy)

• Can memorize



Training and test sets

http://www.holehouse.org/mlclass/10_Advice_for_applying_machine_learning.html



Training, validation and test sets

http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets



Online learning

http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets

model



MINIST Dataset 

http://yann.lecun.com/exdb/mnist/







Accuracy

• How many of your predictions are correct?

• 95% ~ 99%? 

• Check out the lab video


